THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Problem Set 4: Limits

1. Let A be a subset of \mathbb{R} and let $c \in \mathbb{R}$. Prove that c is a cluster point of A if and only if there exists a sequence $\left\{a_{n}\right\}$ in $A \backslash\{c\}$ such that $\lim _{n \rightarrow \infty} a_{n}=c$.
2. Show that the set \mathbb{N} of natural numbers has no cluster points.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $c \in \mathbb{R}$. Show that $\lim _{x \rightarrow c} f(x)=L$ if and only if $\lim _{x \rightarrow 0} f(x+c)=L$.
4. Use the $\epsilon-\delta$ definition of limit show that
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4$;
(b) $\lim _{x \rightarrow 0} \frac{|x|}{x^{2}}=0$.
5. By considering the negation of the $\epsilon-\delta$ definition, show that the following limits do NOT exist.
(a) $\lim _{x \rightarrow 0} \frac{|x|}{x}$;
(b) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$.
6. Give an example of two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ such that $\lim _{x \rightarrow c}(f g)(x)$ exists, but both $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ do not exist.
7. Give an example of two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ such that both $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c}(f g)(x)$ exist, but $\lim _{x \rightarrow c} g(x)$ does not exist.
8. Show by any method that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does NOT exist.
9. Let $f: \mathbb{Q} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x$. Show that $\lim _{x \rightarrow c} f(x)=c$ for any $c \in \mathbb{R}$. (Note: Every real number is a cluster point of \mathbb{Q}.)
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cl}
x & \text { if } x \in \mathbb{Q} \\
-x & \text { otherwise }
\end{array}\right.
$$

Show that $\lim _{x \rightarrow c} f(x)$ does not exist for any nonzero number c and $\lim _{x \rightarrow 0} f(x)=0$. (Remark: What is the difference between the functions in this question and the previous question?)
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\lim _{x \rightarrow 0} f(x)=L$, and let $a>0$. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x):=f(a x)$ for $x \in \mathbb{R}$, show that $\lim _{x \rightarrow 0} g(x)=L$.
12. Let f, g be defined on $A \subseteq \mathbb{R}$ to \mathbb{R}, and let c be a cluster point of A. Suppose that f is bounded on a neighborhood of c and that $\lim _{x \rightarrow c} g(x)=0$. Prove that $\lim _{x \rightarrow c}(f g)(x)=0$.
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Assume that $\lim _{x \rightarrow 0} f(x)=L$ exists. Prove that $L=0$, and then prove that f has a limit at every point $c \in \mathbb{R}$.
14. Suppose the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that there is some $M>0$ such that

$$
|f(x)| \leq M|x|^{2} \quad \text { for all } x \in \mathbb{R}
$$

Prove that

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=0
$$

15. Establish the squeeze theorem at infinity.
16. Let $f:(0, a) \rightarrow \mathbb{R}$ for some $a>0$. Establish a definition of right hand limit of the function f at 0 .
17. Let $c \in \mathbb{R}$ and let f be defined for $x \in(c,+\infty)$ and $f(x)>0$ for all $x \in(c,+\infty)$. Show that $\lim _{x \rightarrow c} f(x)=+\infty$ if and only if $\lim _{x \rightarrow c} \frac{1}{f(x)}=0$.
