THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016 Problem Set 4: Limits

- 1. Let A be a subset of \mathbb{R} and let $c \in \mathbb{R}$. Prove that c is a cluster point of A if and only if there exists a sequence $\{a_n\}$ in $A \setminus \{c\}$ such that $\lim_{n \to \infty} a_n = c$.
- 2. Show that the set \mathbb{N} of natural numbers has no cluster points.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ and let $c \in \mathbb{R}$. Show that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to 0} f(x+c) = L$.
- 4. Use the $\epsilon \delta$ definition of limit show that

(a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

(b) $\lim_{x \to 0} \frac{|x|}{x^2} = 0.$

5. By considering the negation of the $\epsilon - \delta$ definition, show that the following limits do NOT exist.

(a)
$$\lim_{x \to 0} \frac{|x|}{x};$$

(b)
$$\lim_{x \to 0} \frac{1}{x^2}.$$

- 6. Give an example of two functions $f, g : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$ such that $\lim_{x \to c} (fg)(x)$ exists, but both $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ do not exist.
- 7. Give an example of two functions $f, g : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$ such that both $\lim_{x \to c} f(x)$ and $\lim_{x \to c} (fg)(x)$ exist, but $\lim_{x \to c} g(x)$ does not exist.
- 8. Show by any method that $\lim_{x\to 0} \sin \frac{1}{x}$ does NOT exist.
- 9. Let $f : \mathbb{Q} \to \mathbb{R}$ be a function defined by f(x) = x. Show that $\lim_{x \to c} f(x) = c$ for any $c \in \mathbb{R}$. (Note: Every real number is a cluster point of \mathbb{Q} .)
- 10. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ \\ -x & \text{otherwise.} \end{cases}$$

Show that $\lim_{x\to c} f(x)$ does not exist for any nonzero number c and $\lim_{x\to 0} f(x) = 0$. (Remark: What is the difference between the functions in this question and the previous question?)

- 11. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x \to 0} f(x) = L$, and let a > 0. If $g : \mathbb{R} \to \mathbb{R}$ is defined by g(x) := f(ax) for $x \in \mathbb{R}$, show that $\lim_{x \to 0} g(x) = L$.
- 12. Let f, g be defined on $A \subseteq \mathbb{R}$ to \mathbb{R} , and let c be a cluster point of A. Suppose that f is bounded on a neighborhood of c and that $\lim_{x\to c} g(x) = 0$. Prove that $\lim_{x\to c} (fg)(x) = 0$.

- 13. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Assume that $\lim_{x \to 0} f(x) = L$ exists. Prove that L = 0, and then prove that f has a limit at every point $c \in \mathbb{R}$.
- 14. Suppose the function $f: \mathbb{R} \to \mathbb{R}$ has the property that there is some M > 0 such that

$$|f(x)| \le M|x|^2$$
 for all $x \in \mathbb{R}$.

Prove that

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{f(x)}{x} = 0.$$

- 15. Establish the squeeze theorem at infinity.
- 16. Let $f:(0,a) \to \mathbb{R}$ for some a > 0. Establish a definition of right hand limit of the function f at 0.
- 17. Let $c \in \mathbb{R}$ and let f be defined for $x \in (c, +\infty)$ and f(x) > 0 for all $x \in (c, +\infty)$. Show that $\lim_{x \to c} f(x) = +\infty$ if and only if $\lim_{x \to c} \frac{1}{f(x)} = 0$.